首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4086篇
  免费   567篇
  国内免费   1279篇
化学   4062篇
晶体学   359篇
力学   159篇
综合类   54篇
数学   111篇
物理学   1187篇
  2024年   7篇
  2023年   70篇
  2022年   140篇
  2021年   239篇
  2020年   240篇
  2019年   150篇
  2018年   145篇
  2017年   198篇
  2016年   219篇
  2015年   194篇
  2014年   219篇
  2013年   442篇
  2012年   297篇
  2011年   345篇
  2010年   285篇
  2009年   302篇
  2008年   323篇
  2007年   332篇
  2006年   332篇
  2005年   275篇
  2004年   218篇
  2003年   187篇
  2002年   173篇
  2001年   83篇
  2000年   89篇
  1999年   64篇
  1998年   68篇
  1997年   40篇
  1996年   43篇
  1995年   32篇
  1994年   40篇
  1993年   27篇
  1992年   26篇
  1991年   18篇
  1990年   12篇
  1989年   3篇
  1988年   9篇
  1987年   3篇
  1986年   2篇
  1985年   9篇
  1984年   7篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1959年   1篇
排序方式: 共有5932条查询结果,搜索用时 31 毫秒
71.
CO2 is the main component of greenhouse gases and also an important carbon source. The hydrogenation of CO2 to methane using Ni-based catalysts can not only alleviate CO2 emissions but also obtain useful fuels. However, Ni-based catalysts face one major problem of the sintering of Ni nanoparticles in the process of CO2 methanation. Thus, this work has synthesized a series of efficient and robust nickel silicate catalysts (NiPS−X) with different nickel content derived from nickel phyllosilicate by the hydrothermal method. It was found that the Ni loading plays a critical role in the structure and catalytic performance of the NiPS−X catalysts. The catalytic performance gradually increases with the increase of Ni loading. In particular, the highly dispersed NiPS-1.6 catalyst with a high Ni loading of 34.3 wt% could obtain the CO2 conversion greater than 80%, and the methane selectivity was close to 100% for 48 h at 330 °C and the GHSV of 40,000 mL g−1 h−1. The excellent catalytic property can be assigned to the high dispersion of Ni nanoparticles and the strong interaction between the active component and the carrier, which is derived from a unique layered silicate structure with lots of nickel phyllosilicate and a large number of Lewis acid sites.  相似文献   
72.
Halogenated organic contaminants, including legislated and potential persistent organic pollutants and their precursors, represent a major environmental concern due to their hazardous effects in humans and wildlife as well as their ability to bioaccumulate through the food chain, their high resistance to environmental degradation, and their long-range atmospheric transport potential. The monitoring of these compounds in the environment at ultra-trace concentration levels requires highly selective and sensitive analytical methodologies. The lack of reference step-by-step methods led to a high number of reliable determinations depending on analytes, the complexity of the sample, and available instrumentation. Thus, this review article is mainly focused on the last advances in the analytical methodologies for the determination of halogenated organic contaminants. Methodologies regarding sample treatment, chromatographic separation, and mass spectrometry analysis have been reviewed to finally highlight the future perspectives for the improvement of the analytical determinations of these compounds and the throughput of environmental control laboratories in this field.  相似文献   
73.
Excessive UV solar radiation exposure causes human health risks; therefore, the study of multifunctional filters is important to skin UV protective ability and also to other beneficial activities to the human organism, such as reduction of reactive oxygen species (ROS) responsible for cellular damages. Potential multifunctional filters were obtained by intercalating of ferulate anions into layered simple metal hydroxides (LSH) through anion exchange and precipitation at constant pH methods. Ultrasound treatment was used in order to investigate the structural changes in LSH-ferulate materials. Structural and spectroscopic analyses show the formation of layered materials composed by a mixture of LSH intercalated with ferulate anions, where carboxylate groups of ferulate species interact with LSH layers. UV-VIS absorption spectra and in vitro SPF measurements indicate that LSH-ferulate systems have UV shielding capacity, mainly UVB protection. The results of reactive species assays show the ability of layered compounds in capture DPPH, ABTS•+, ROO, and HOCl/OCl reactive species. LSH-ferulate materials exhibit antioxidant activity and singular optical properties that enable their use as multifunctional filters.  相似文献   
74.
Conventional methods generally used to synthesize heterogeneous photocatalysts have some drawbacks, mainly the difficult control/preservation of catalysts’ morphology, size or structure, which strongly affect the photocatalytic activity. Supercritical carbon dioxide (scCO2)-assisted techniques have recently been shown to be a promising approach to overcome these limitations, which are still a challenge. In addition, compared to traditional methods, these innovative techniques permit the synthesis of high-performance photocatalysts by reducing the use of toxic and polluting solvents and, consequently, the environmental impact of long-term catalyst preparation. Specifically, the versatility of scCO2 allows to prepare catalysts with different structures (e.g., nanoparticles or metal-loaded supports) by several supercritical processes for the photocatalytic degradation of various compounds. This is the first updated review on the use of scCO2-assisted techniques for photocatalytic applications. We hope this review provides useful information on different approaches and future perspectives.  相似文献   
75.
Soy protein isolate (SPI) powders often have poor water solubility, particularly at pH values close to neutral, which is an attribute that is an issue for its incorporation into complex nutritional systems. Therefore, the objective of this study was to improve SPI solubility while maintaining low viscosity. Thus, the intention was to examine the solubility and rheological properties of a commercial SPI powder at pH values of 2.0, 6.9, and 9.0, and determine if heat treatment at acidic or alkaline conditions might positively influence protein solubility, once re-adjusted back to pH 6.9. Adjusting the pH of SPI dispersions from pH 6.9 to 2.0 or 9.0 led to an increase in protein solubility with a concomitant increase in viscosity at 20 °C. Meanwhile, heat treatment at 90 °C significantly improved the solubility at all pH values and resulted in a decrease in viscosity in samples heated at pH 9.0. All SPI dispersions measured under low-amplitude rheological conditions showed elastic-like behaviour (i.e., G′ > G″), indicating a weak “gel-like” structure at frequencies less than 10 Hz. In summary, the physical properties of SPI can be manipulated through heat treatment under acidic or alkaline conditions when the protein subunits are dissociated, before re-adjusting to pH 6.9.  相似文献   
76.
Vegetable processing pomace contains valuable substances such as natural colors that can be reused as functional ingredients. Due to a large amount of water, they are an unstable material. The aim of our research was to assess how the pretreatment method (thermal or nonthermal) affects the properties of powders obtained from beet juice and pomace after the freeze-drying process. The raw material was steamed or sonicated for 10 or 15 min, and then squeezed into juice and pomace. Both squeezed products were freeze-dried. The content of dry substance; L*, a*, and b* color parameters; and the content of betalain pigments were analyzed. Pretreatments increased the proportion of red and yellow in the juices. Steam and ultrasound caused a significant reduction in parameter b* in the dried pomace. A significant increase in betanin in lyophilizates was observed after pretreatment with ultrasound and steam for 15 min. As a result of all experiments, dried juices and pomaces can also be used as a colorant source. However, there is higher potential with pomaces due to their additional internal substances as well as better storage properties. After a few hours, juice was sticky and not ready to use.  相似文献   
77.
Production waste of primary lithium batteries constitutes a considerable secondary lithium feedstock. Although the recycling of lithium batteries is a widely studied field of research, the metallic residues of non-rechargeable lithium battery production are disposed of as waste without further recycling. The risks of handling metallic Li on a large scale typically prevent the metal from being recycled. A way out of this situation is to handle Li in an aqueous solution, from where it can be isolated as Li2CO3. However, the challenge in hydrometallurgical treatment lies in the high energy release during dissolution and generation of H2. To reduce these process-related risks, the Li sheet metal punching residues underwent oxidative thermal treatment from 300 to 400 °C prior to dissolution in water. Converting Li metal to Li2O in this initial process step results in an energy release reduction of ∼70 %. The optimal oxidation conditions have been determined by experimental design varying three factors: temperature, Li metal sheet thickness, and residence time. With 96.9±2.6 % almost the entire Li amount is converted to Li2O, after 2.5 h treatment at 400 °C for a Li sheet thickness of 1.99 mm. Final precipitation with CO2 yields 85.5±3.0 % Li2CO3. Using pure Li sheets, the product Li2CO3 is obtained in battery-grade quality (>99.5 %). Non-precipitated Li is recirculated into the process on the stage of dissolving Li2O, thus avoiding loss of material.  相似文献   
78.
The current understanding of deviations of human microbiota caused by antibiotic treatment is poor. In an attempt to improve it, a proof-of-principle spectroscopic study of the breath of one volunteer affected by a course of antibiotics for Helicobacter pylori eradication was performed. Fourier transform spectroscopy enabled searching for the absorption spectral structures sensitive to the treatment in the entire mid-infrared region. Two spectral ranges were found where the corresponding structures strongly correlated with the beginning and end of the treatment. The structures were identified as methyl ester of butyric acid and ethyl ester of pyruvic acid. Both acids generated by bacteria in the gut are involved in fundamental processes of human metabolism. Being confirmed by other studies, measurement of the methyl butyrate deviation could be a promising way for monitoring acute gastritis and anti-Helicobacter pylori antibiotic treatment.  相似文献   
79.
Treatment of polluted soil is one of the priorities in the search of a more sustainable planet. Electrochemically assisted soil remediation has been considered a good option for removing organic contaminants contained in soil, including the removal of volatile organic compounds, associated with gaseous streams produced during the treatment. Also, recently, electrochemical gas treatment technologies have been appointed as promising for the treatment of volatile organic compounds. In this work, we review the current opinion about the most recent studies in both areas. The first section focuses on the production of gaseous compounds during soil remediation by conventional and electrochemical systems. The second section describes the recent progress in the integration of adsorption and absorption with electrochemical processes. Finally, we discuss the holistic application of assisted electrochemical technologies in soil remediation, considering also emerging processes recently published in the literature.  相似文献   
80.
Nanomaterials with localized surface plasmon resonance (LSPR) locating in the near-infrared region have broad application prospects in the field of biomedicine. However, the biggest problem that limits the biomedical application of such nanomaterials lies in two aspects: First, the potential long-term in vivo toxicity caused by the metabolism of many nanomaterials with LSPR effect; Second, most of current nanomaterials with LSPR effect are difficult to achieve LSPR wavelength tunability in the near-infrared region to adapt to different biomedical applications. Copper selenide nanomaterials are composed of selenium and copper, which are necessary nutrient elements for human life. Because of the active and flexible chemical properties of selenium and copper, copper selenide nanomaterials can not only be effectively degraded and utilized in human body, but also be endowed with various physicochemical properties by chemical modification or doping. Recently, copper selenide nanomaterials have shown unique properties such as LSPR in the near-infrared region, making them attractive for near-infrared thermal ablation, photoacoustic imaging, disease marker detection, multimode imaging, and so on. Currently, to the best of our knowledge, there is no review on the LSPR properties of copper selenide nanomaterials and its biomedical applications. This review first discusses the relationship between the physicochemical properties and the LSPR of copper selenide nanomaterials and then summarizes the latest progress in the application of copper selenide nanomaterials in biological detection, diagnosis, and treatment of diseases. In addition, the advantages, and prospects of copper selenide nanomaterials in biomedicine are also highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号